Eigenvalues and Eigenvectors

1. Let *A* be an $n \times n$ square matrix and $\vec{v} \in \mathbb{R}^n$, $\vec{v} \neq 0$. Prove that

a) if $A\vec{v} = \vec{0}$ then A is a degenerate matrix; **b)** If $A\vec{v} = l\vec{v}$ then det(A-l Id)=0.

Definition. Let A be a square matrix or a linear map. If $A\vec{v} = l\vec{v}, \vec{v} \neq 0$ then l is *eigenvalue* and \vec{v} is *eigenvector* of A corresponding to l.

Usually *A* considered to be a complex matrix (even when all entries are real) with complex eigenvalues.

Theorem 2. All eigenvalues are roots of the *characteristic* polynomial $ch_A(x) = det(x Id - A)$.

Theorem 3. If A and B are similar then a) det(A)=det(B), b) tr(A)=tr(B); c) A and B have the same set of eigenvalues, d) the characteristic polynomials of A and B are the same.

4. Find en example of two nonsimilar matrices **a**) with same trace and determinant; **b**) with the same characteristic polynomial.

Theorem 5. (*without proof*) Let *A* be a $n \times n$ matrix with eigenvalues $\lambda_1, ..., \lambda_n$. Then *A* is similar to an upper triangular matrix with the entries $\lambda_1, ..., \lambda_n$ on the main diagonal.

6. Let *A* be a $n \times n$ matrix with eigenvalues $\lambda_1, ..., \lambda_n$. Prove that eigenvalues of A^2 are $\lambda_1^2, ..., \lambda_n^2$.

Theorem 7. (*without proof*) Let *S* be a real symmetric matrix. Then

a) S is similar to a real diagonal matrix,

b) There is an orthogonal real basis consisting of *S*'s eigenvectors.

Theorem 8. (without proof) $ch_A(A)=0$.

9. Find the maximum $\dim \langle Id, A, A^{2}, A^{3}, \dots, A^{10} \rangle$ over all \swarrow matrices A.

10. Given a real 2×2 matrix and nonzero vectors $\vec{u}, \vec{v} \in \mathbb{R}^2$ such that

 $\vec{u} \perp \vec{v}$, $A\vec{u} = 2\vec{u}$, $A\vec{v} = 3\vec{v}$, prove that $|A\vec{w}| \ge 2|\vec{w}| \quad \forall \vec{w} \in \mathbb{R}^2$.

11. Determine all complex numbers *l* for which there exist a positive integer *n* and a real matrix *A* such that $A^2 = A^T$ and *l* is an eigenvalue of *A*.

Credit problems

EV1. Does there exist a real 4×4 matrix A such that tr(A) = 5 and $A^2 + A^T = Id$?

EV2. Let *A* and *B* be real symmetric matrices with all eigenvalues strictly greater than 1. Let *u* be a real eigenvalue of matrix *AB*. Prove that |u| > 1.

EV3. Prove that for any three 2×2 matrices A_1, A_2, A_3 , the polynomial

 $P(x_1, x_2, x_3) = \det(x_1A_1 + x_2A_2 + x_3A_3)$ is not identical to $x_1^2 + x_2^2 + x_3^2$.

EV4. Let *A* be a symmetric $n \times n$ matrix with real entries, let $a_{1,}a_{2,}...,a_{n}$ denote values along its main diagonal, and let $l_{1,}l_{2,}...,l_{n}$ denote its eigenvalues. Show that

 $\sum_{1 \le i < j \le n} a_i a_j \ge \sum_{1 \le i < j \le n} l_i l_j$ and determine all matrices for which the equality holds.

www.ashap.info/Uroki/eng/NYUAD18/index.html