Dimension of Vector Spaces

1. It is known that the triples (1,2,3) and (0,0,4) satisfy the system of equations

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = 0 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = 0 \\ \cdots \\ a_{n1}x_1 + a_{n2}x_2 + a_{n3}x_3 = 0 \end{cases}$$

Prove that triples **a**) (1, 2, 7); **b**) (1, 2, -1); **c**) (5, 10, 15); **d**) (2, 4, 24) also satisfy this system. **e**) Find all solutions of the system if not all the coefficients are zero.

Definition. Let a set *V* of elements called *vectors* and a field *K* whose elements are called *numbers* be such that we can add vectors and multiply them by numbers to form from *V* a group by addition with the following properties (here $k, k_1, k_2 \in K, \vec{v}, \vec{v_1}, \vec{v_2} \in V$):

- 1) $(k_1 + k_2)\vec{v} = k_1\vec{v} + k_2\vec{v}$,
- 2) $k(\vec{v_1} + \vec{v_2}) = k \vec{v_1} + k \vec{v_2}$,
- 3) $1 \cdot \vec{v} = \vec{v}$
- 4) $(k_1 k_2) \vec{v} = k_1 (k_2 \vec{v})$.

Then *V* is said to be a *vector space* over *K*.

2. Which of the following objects are vector spaces, and over what fields?

a) linear equations of the form $a_1x_1 + a_2x_2 + ... + a_nx_n = l$, b) K^n – rows or columns consisting of n numbers, c) increasing functions $\mathbb{R} \to \mathbb{R}$, d) $K_n[x]$ – polynomials of degree $d \le n$, e) complex numbers, f) $\mathbb{Z}[x]$, g) vectors with all rational coordinates in 3D-space, h) real sequences converging to zero, i) arithmetic sequences, j) geometric sequences.

Remark. Using the notion of vector space K^n one can replace a linear system of *n* equations for *k* unknowns with a single linear vector equation $x_1 \vec{v_1} + ... + x_k \vec{v_k} = \vec{l}$.

Definition. A vector \vec{v} is said to be *linearly dependent* (over K) of (the set of) the vectors $\vec{v_1}, \vec{v_1}, \dots, \vec{v_m}$ if it can be represented in the form $k_1 \vec{v_1} + k_2 \vec{v_2} + \dots + k_m \vec{v_m}$, where $k_1, k_2, \dots, k_m \in K$

A collection of vectors $\vec{v_1}, \vec{v_1}, \dots, \vec{v_m}$ is said to be *linearly independent* if it does not contain vectors linearly dependent on other vectors of the collection; otherwise it is called *linearly dependent*.

3. Prove that each polynomial of degree $\leq n$ is linearly dependent of the polynomials $1, x, x(x-1), x(x-1)(x-2), \dots, x(x-1)(x-2)\dots(x-n+1)$.

Definition. A *basis* of a vector space V is a collection of linearly independent vectors in V such that any other vector of V is linearly dependent of the collection.

Examples of bases: a) 1 and *i* of **C** over **R**,
b)
$$(1, 0, ..., 0), (0, 1, ..., 0), ..., (0, 0, ..., 1)$$
 of K^n , **c)** $1, x, x^{2}, ..., x^n$ of $K_n[x]$.

of *V*, then $\vec{v_1}, \vec{v_2}, \dots, \vec{v_m}$ is a Theorem If basis any vector in V4. $k_1 v_1 + ... + k_m v_m$, where $k_1 ..., k_m \in K$ represented in the can form a) be **b**) Such a representation is unique.

proof). Theorem 5 (without a) Each vector space has а basis. Any bases of a vector space the vectors. b) two have same number of c) Any linearly independent set of vectors is a subset of a basis.

Definition. The number of vectors in a basis of a given vector space V is called the *dimension* of V and denoted dim V.

6. Find the dimensions of each vector space mentioned in Problem 2.

Remark. The notion of dimension helps us to use the pigeonhole principle for vector spaces: though a space usually consists of an infinite number of vectors, the number of vectors in a basis is finite.

Lemma 7. Any n+1 vectors in K^n are linearly dependent.

Theorem 8. If a linear system of n equations for n unknowns has a single unique solution for some set of constant terms, then the system has a single unique solution for any set of constant terms.

Theorem 9. If a vector space V over K has a basis of n elements, then V is isomorphic to K^n .

Credit problems

Dim1. Let V be the set of all sequences with real terms a_n , where $n \in \mathbb{N}$, such that $a_{n+3} = a_n + 2 a_{n+1} + a_{n+2}$. Prove that V is a vector space and find $\dim V$.

Dim2. Prove that for any distinct $a_0, a_1, ..., a_n \in K$ the set $(x-a_1)(x-a_2)...(x-a_n), (x-a_0)(x-a_2)...(x-a_n), ..., (x-a_0)(x-a_1)...(x-a_{n-1})$ is a basis in $K_n[x]$

Dim3. For a real k, denote by $M_n(k)$ the set of $n \times n$ matrices A satisfying $A^T = kA$. Prove that $M_n(k)$ is a vector space and find its dimension for each k.

Dim4. Given 10 matrices of size 9x9. Prove that some nontrivial linear combination of these matrices has zero determinant.

www.ashap.info/Uroki/eng/NYUAD18/index.html