Polynomials and Equations

Some answers and solutions

Facts and theorems

Theorem I (Bézout). Let *a* be a root of the polynomial P(x). Then there exists a polynomial Q(x) such that P(x)=(x-a)Q(x).

$$\begin{aligned} x^{2}-a^{2} &= (x-a)(x+a) \\ x^{3}-a^{3} &= (x-a)(x^{2}+ax+a^{2}) \\ x^{n}-a^{n} &= (x-a)(x^{n-1}+ax^{n-2}+\ldots+a^{n-2}x+a^{n-1}) = (x-a)Q_{n} \\ P(x) &= P(x)-P(0) = P(x)-P(a) = b_{n}(x^{n}-a^{n}) + b_{n-1}(x^{n-1}-a^{n-1}) + \ldots + b_{1}(x-a) = (x-a)(b_{n}Q_{n}+b_{n-1}Q_{n-1}+\ldots) \end{aligned}$$

Theorem II. a) Any polynomial of degree *n* has at most *n* roots.

b) If two polynomials of degree $\leq n$ coincide in n+1 points they are identical.

Proofs. a) It suffices to show that if a polynomial *P* has at least *n* roots has degree then $deg P \ge n$. Let *a* and *b* be distinct roots of P(x). Then P(x)=(x-a)Q(x), and 0=P(b)=(b-a)Q(b)=0 => Q(b)=0 => Q(x)=(x-b)R(x) => P(x)=(x-a)Q(x) = (x-a)(x-b)R(x).

In the same way if $a_1, a_2, ..., a_n$ be distinct roots of P(x), then $P(x) = (x - a_1)(x - a_2)...(x - a_n)T(x) \implies deg P \ge n + deg T \ge n$

Theorem IV (Viète). a) Numbers *a* and *b* are two roots of $x^2 + px + q = 0 \Leftrightarrow p = -(a+b)$, q=ab. *b*) Numbers *a*, *b* and *c* are three roots of $x^3 + px^2 + qx + r = 0 \Leftrightarrow p = -(a+b+c)$, q = ab + ac + bc, r = -abc.

Proof. b) $(x-a)(x-b)(x-c) = x^{3} - (a+b+c)x^{2} + (ab+ac+bc)x - abc$

Theorem V. Given are distinct numbers $x_1, x_2, ..., x_n$. Then for any numbers $y_1, y_2, ..., y_n$ there exist a unique polynomial P(x) of degree less then *n* such that $P(x_1)=y_1, P(x_2)=y_2,..., P(x_n)=y_n$.

Proof. P is unique beause of theorem IIb. Here is the example of the polynomial

$$L_{i} = \frac{(x - x_{1})(x - x_{2})\dots(x - x_{i-1})(x - x_{i+1})\dots(x - x_{n})}{(x_{i} - x_{1})(x_{i} - x_{2})\dots(x_{i} - x_{i-1})(x_{i} - x_{i+1})\dots(x_{i} - x_{n})}$$

$$L_{i}(x_{1}) = L_{i}(x_{2}) = \dots = L_{i}(x_{n}) = 0 \text{ except for } L_{i}(x_{i}) = 1$$

Then $P = y_1 L_1 + y_2 L_2 + \dots + y_n L_n$

$$P(x_i) = y_1 L_1(x_i) + y_2 L_2(x_i) + \dots + y_i L_i(x_i) + \dots = y_1 \cdot 0 + y_2 \cdot 0 + \dots + y_i \cdot 1 + \dots = y_i$$

Problems

3. In the polynomial identity $(x^2-1)(x+...) = (x-1)(x+3)(x+...)$ two numbers were replaced by dots. Restore the numbers.

Answer. $(x^2-1)(x+3) = (x-1)(x+3)(x+1)$

4. Find the sum of all coefficients of the polynomial $(x-2)^{100}$.

Hint. The sum of all coefficients of the polynomial P is equal to P(1)

Answer. 1=P(1)=(1-2)¹⁰⁰

5. Given are two polynomials P(x) and Q(x) with real coefficients. Their sets of roots are A and B, respectively. Construct a polynomial with the set of roots equal to a) $A \cup B$ b) $A \cap B$.

Answer. a) PQ; **b)** $P^2 + Q^2$

6. How many roots has the equation $\frac{(x-2)(x-5)}{(9-2)(9-5)} + \frac{(x-9)(x-5)}{(2-9)(2-5)} + \frac{(x-9)(x-2)}{(5-9)(5-2)} = 1$?

Hint. Numbers 2, 5 and 9 satisfy the equation.

Answer. Infinitely many.

7. It is known that 10 is a root of $x^2 + px + 2 - 5\sqrt{3} = 0$. Find the other root of this equation.

Answer. $0.2 - 0.5\sqrt{3}$

8. Factorize the polynomials: **a**) $x^{3}+x^{2}+x-3$ **b**) $x^{4}+x^{2}+1$ **c**) $x^{4}+1$.

Answer. a) $(x-1)(x^2+2x+3)$ b) $x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2+x+1)(x^2-x+1)$ c) $x^4+1 = (x^4+2x^2+1)-2x^2 = (x^2+1)^2-(\sqrt{2}x)^2 = (x^2+\sqrt{2}x+1)(x^2-\sqrt{2}x+1)$

9. a) The product of four consecutive integers is 7!. Find these integers. How many solutions has the problem?

b) How many real solutions has the equation x(x+1)(x+2)(x+3) = 7!

Solution. $x(x+1)(x+2)(x+3) = [x(x+3)][(x+1)(x+2)] = (x^2+3x)(x^2+3x+2)$

 $t=x^2+3x$, the equation t(t+2)=5040 has 2 solutions $t_1=70$ and $t_2=-72$.

Then $x^2+3x=70$ has 2 solutions $x_1=7$ and $x_2=-10$.

 $x^2+3x=-72$ has no real solutions.

10. Given is a polynomial P. It is known that the equation P(x)=x has no roots. Prove that the equation P(P(x))=x has no roots.

Proof. P(x)-x=0 has no roots => either P(x)-x>0 for any x or P(x)-x<0 for any x. Hence either P(x)>x for any x or P(x)<x for any x.

Case 1) P(x)>x => P(P(x))>P(x) => P(P(x))>x for any x. **Case 2)** P(x)<x => P(P(x))<P(x) => P(P(x))<x for any x.

www.ashap.info/Uroki/eng/NYUAD15/index.html