Matrices: Convenient Basis

1. Find the matrices of the following linear maps in the given basis **a)** $D_n: \mathbb{R}_n[x] \to \mathbb{R}_n[x]$ in the basis $1, x, \dots, x^n$, where $D_n(P) = P'$ **b**) i $S_n : \mathbb{R}_n[x] \to \mathbb{R}_n[x]$ in the basis, $1, x, \dots, x^n$ where $S_n(P(x)) = P(2x-1)$ (for n=2)

c) $R_u: \mathbb{R}_2 \to \mathbb{R}_2$ in the standard basis, where R_u is rotation through an angle *u* counterclockwise around the origin.

2. Find the product of the matrices from the previous problem:

a) $D_2 S_2$ **b)** $S_2 D_2$ **c)** $R_a R_b$ **d)** D_3^2 **e)** D_3^3 **f)** R_u^n **g)** D_n^n **h)** S_2^n . **3.** Let A be an $n \times n$ square matrix and $\vec{v} \in \mathbb{R}^n$ such that $A \vec{v} = \vec{0}$, prove that A is a degenerate matrix.

4. Find the eigenvalues and the eigenvectors of the maps D_n , S_2 , R_u .

5. Find a real 2×2 matrix A such that $A^2 = -Id$.

Definition. Let B and D be two bases of the vector space V. Then P_{BD} is the matrix of changing from *D*-coordinates to *B*-coordinates, which means that for any $\vec{v} \in V$ holds $[\vec{v}]_B = P_{BD}[\vec{v}]_D$. 6. Let $B = \{1, x, x^2\}, D = \{1, x - 1, (x - 1)^2\}$ in $\mathbb{R}_2[x]$. Find P_{BD} .

7. Prove that a) P_{BD} is always nonsingular, b) $P_{BD}P_{DB}=I$ (here I is the *identity* or *unit* matrix).

Lemma 8. Let A_B and A_D be the matrices of the same linear map in the bases B and D respectively. Then $A_D = P_{DB} A_B P_{BD}$.

Definition. The matrices T and S are *similar* if there is nonsingular matrix P such that $T = PSP^{-1}$ Lemma 9. The matrices of the same linear map in different bases are similar.

Theorem 10. If T and S are similar then a) det(T)=det(S), b) tr(T)=tr(S), c) T and S have the same set of eigenvalues, d) the characteristic polynomials of T and S are the same.

Theorem 11. (*without proof*) Let A be a $n \times n$ matrix with eigenvalues $\lambda_1, \dots, \lambda_n$. Then A is similar to an upper triangular matrix with the entries $\lambda_1, \dots, \lambda_n$ on the main diagonal.

12. Let A be a $n \times n$ matrix with eigenvalues $\lambda_1, \dots, \lambda_n$. Prove that eigenvalues of A^2 are $\lambda_1^2, \ldots, \lambda_n^2$.

Theorem 13. (*without proof*) Let S be a real symmetric matrix. Then

a) S is similar to a real diagonal matrix,

b) There is an orthogonal real basis consisting of S's eigenvectors.

14. Does there exist a real 3×3 matrix A such that tr(A) = 0 and $A^2 + A = Id$?

15 Given linear map $T: \mathbb{R}^2 \to \mathbb{R}^2$ and nonzero vectors \vec{u} and \vec{v} such that $\vec{u} \perp \vec{v}$ and $T(\vec{u}) = 2\vec{u}, T(\vec{v}) = 3\vec{v}$, prove that $|T(\vec{w})| \ge 2|\vec{w}|$.

IMC11.1.2. Does there exist a real 3×3 matrix A such that tr(A) = 0 and $A^2 + A^T = Id$? **IMC13.1.1.** Let A and B be real symmetric matrices with all eigenvalues strictly greater than 1. Let *u* be a real eigenvalue of matrix *AB*. Prove that |u| > 1.

IMC14.2.2. Let A be a symmetric $n \times n$ matrix with real entries, let a_1, a_2, \dots, a_n denote values along its main diagonal, and let l_1, l_2, \dots, l_n denote its eigenvalues. Show that

 $\sum_{1 \le i < j \le n}^{\infty} a_i a_j \ge \sum_{1 \le i < j \le n}^{\infty} l_i l_j \text{ and determine all matrices for which the equality holds.}$ **IMC7.1.3'**. Prove that for any three 2×2 matrices A_1, A_2, A_3 , the polynomial $P(x_1, x_2, x_3) = \det(x_1 A_1 + x_2 A_2 + x_3 A_3)$ is not identical to $x_1^2 + x_2^2 + x_3^2$.

www.ashap.info/Uroki/eng/NYUAD15/index.html