Continuous Functional Equations

Let $f, g: \mathbb{R} \to \mathbb{R}$

1. Find out which of the following statements are true:

a) if f is continuous and f(a)>0, then $\exists c \neq a : f(c)>0$,

b) if f is continuous and f(a)=A, f(b)=B, then $\forall C \in [A, B] \exists c \in [a, b]: f(c)=C$,

c) if f is continuous and $range(f) = \mathbb{R}$ then f is monotonic,

d) if f is monotonic and $range(f) = \mathbb{R}$ then f is continuous,

e) if f is continuous and takes each positive value then f has a zero,

f) if f and g are continuous and $f(r) \le g(r) \quad \forall r \in \mathbb{Q}$ then $f(x) \le g(x) \quad \forall x \in \mathbb{R}$.

g) if f and g are non-decreasing and $f(r) \le g(r) \quad \forall r \in \mathbb{Q}$ then $f(x) \le g(x) \quad \forall x \in \mathbb{R}$

h) if $f(x)-f(y) \le 10|x-y| \quad \forall x, y$ then f is continuous

i) if f is continuous and $range(f) \subset \mathbb{Q}$ then f is constant.

2. a) Find all continuous functions f such that $f(x+y)=f(x)+f(y) \quad \forall x, y \in \mathbb{R}$. **b)** Find all monotonic functions f such that $f(x+y)=f(x)+f(y) \quad \forall x, y \in \mathbb{R}$.

3. Given a function f such that $f(x+2y)=f(x)+f(y) \quad \forall x, y \in \mathbb{R}$, find **a**) f(-1) **b**) f(2015) **c**) f(x).

4. Find all continuous functions $F: M \to \mathbb{R}$ if $f(x+2y) = f(x) + f(y) \quad \forall x, y \in M$ and **a)** $M = \{x \in \mathbb{R} : x \ge 0\}$ **b)** $M = \mathbb{R}_{pos}$.

5. Find all continuous functions $f: \mathbb{R} \to \mathbb{R}$ such that $f(x+y) = f(x)f(y) \quad \forall x, y \in \mathbb{R}$.

6. Given the function $f : \mathbb{R} \to \mathbb{R}$ such that, for every real $a \ge 1$, the function f(x)+f(ax) is continuous, prove that f is continuous.

Extra problems

RNO2014. Given the function $f: \mathbb{R} \to \mathbb{R}$ such that $(f(x))^2 \le f(y) \quad \forall x > y$, prove that $0 \le f(x) \le 1 \quad \forall x \in \mathbb{R}$

RNO1993. Given $f:\mathbb{R}_{pos} \to \mathbb{R}_{pos}$ such that $f(x^y) = f(x)^{f(y)} \quad \forall x, y \in \mathbb{R}_{pos}$, find

a) Find all such continuous functions, b) all such functions.

IMC6.2.2 Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that for any real numbers a < b, the image f([a,b]) is a closed interval of length b-a.

IMC8.1.1 Find all continuous functions $f: \mathbb{R} \to \mathbb{R}$ such that f(x) - f(y) is rational for all real x and y such that x - y is rational.

RNO1998. Find every $a \in \mathbb{R}$ such that there exists a non-constant function $f: \mathbb{R} \to \mathbb{R}$ satisfying f(a(x+y))=f(x)+f(y).

IMC8.1.2 Denote by V the real vector space of all real polynomials in one variable, and let $P: V \rightarrow \mathbb{R}$ be a linear map. Suppose that for all $f, g \in V$ with P(fg)=0, we have P(f)=0 or P(g)=0. Prove that there exist real numbers x_0, c such that $P(f)=cf(x_0)$ for all $f \in V$.