Polynomials with integer coefficients

- **1.** Let *P* be a polynomials with integer coefficients (in short, $P \in \mathbb{Z}[x]$). Prove that $(a-b)|(P(a)-P(b)) \quad \forall a, b \in \mathbb{Z}$
- **2.** Let $P \in \mathbb{Z}[x]$. Prove that
- a) if a and b are integers of the same parity then P(a) and P(b) are of the same parity.
- **b**) if a and b are integers such that P(a) = 0 and P(b) = 1, then either a = b + 1, or b = a + 1.

3. A polynomial P is such that P(7)=11 and P(11)=13. Prove that at least one of the coefficients of P is not integer.

4. Does there exist $P \in \mathbb{Z}[x]$, $P \neq const$ such that P(x) is a prime number for any integer x?

5. Let $H(x) = a_n x^n + \dots + a_1 x + a_0$ be the polynomial with integer coefficients and $\frac{p}{q}$ an

irreducible fraction such that $H(\frac{p}{q})=0$. Prove that **a**) $p|a_0$ and **b**) $q|a_n$

Definition. Fix a set K of coefficients, e.g., $K = \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{Z}_p, \mathbb{C}$. Let K[x] be the set of polynomials with coefficients in K. A polynomial of K[x] is said to be *irreducible* over K if it does not split into the product of lesser degree polynomials of K[x].

6. Over \mathbb{Q} , factorize the polynomials **a**) $x^4 + 4$ **b**) $x^4 + 1$ **c**) $x^6 - 11x^4 + 36x^2$ into irreducible polynomials.

Extra problems

PIC1. On the graph of a polynomial with integer coefficients two points with integer coordinates are marked. Prove that if the distance between them is integer, then the segment connecting them is parallel to the *x*-axis.

PIC2. Let *P* be a nonconstant polynomial with integer coefficients. Prove that among numbers P(1), P(2), P(3), ... there are infinitely many nonprime numbers.

PIC3. $P \in \mathbb{Z}[x]$ is irreducible over \mathbb{Z} . Prove that there exist $Q \in \mathbb{Z}[x]$ such that P(Q) is reducible over \mathbb{Z} .

IMC07.1.1 Let f be a polynomial of degree 2 with integer coefficients. Suppose that f(k) is divisible by 5 for every integer k. Prove that all coefficients of f are divisible by 5.

IMC08.1.3 Let p be a polynomial with integer coefficients and let $a_1 < a_2 < ... < a_k$ be integers. a) Prove that there exists $a \in \mathbb{Z}$ such that $p(a_i)$ divides p(a) for all i=1,2,...,k.

b) Does there exist $a \in \mathbb{Z}$ such that the product $p(a_1) \cdot p(a_2) \cdot ... \cdot p(a_k)$ divides p(a)? www.ashap.info/Uroki/eng/NYUAD15/index.html