Индуктивные конструкции

Многоэтажные здания строят, ставя по очереди следующий этаж на предыдущий. В математике этому соответствует *индуктивное построение*, когда, например, конструкция для n+1 строится из конструкции для n

- 1. Дан алгоритм: от прямоугольника с неравными сторонами отрезают квадрат со стороной, равной меньшей стороне прямоугольника; если оставшаяся часть не квадрат, процесс повторяют. У вас есть прямоугольник, для которого алгоритм закончит работу ровно после 99-го отрезания, причем все отрезанные квадраты будут разного размера. Как построить прямоугольник, который закончит работу ровно после 101-го отрезания, причем все отрезанные квадраты будут разного размера?
- **2.** Как отметить 100 таких точек, чтобы никакие 3 не лежали на одной прямой и никакие 4 на одной окружности?
 - 3. Дано несколько различных простых чисел. Как найти
- а) не равное ни одному из них простое число;
- **б)** не равное ни одному из них простое число вида 4k-1.
- **в**) Докажите, что простых чисел вида 4k-1 бесконечно много.

Можно шагать не по всем числам, а только по числам избранного вида.

- **4.** Докажите, что любой треугольник можно разрезать на 1001 меньший треугольник так, чтобы у них не было параллельных сторон, кроме тех, по которым треугольники примыкают друг к другу.
- **5.** На столе стоят 1024 стакана с водой. Разрешается взять один из стаканов и перелить из него часть воды в стакан, где воды меньше так, чтобы воды стало поровну. Укажите, как такими операциями добиться, чтобы во всех стаканах стало поровну воды.

Бывают конструкции, где этаж опирается на нижний, но не на предыдущий. Тогда может понадобиться несколько «стартовых» этажей.

- **6.** Докажите, что для любого n>5 равносторонний треугольник можно разрезать на n меньших равносторонних треугольников.
- 7. Первоклассник Сёма пока умеет писать только цифры 1 и 7. Докажите, что для любого n>20 он может написать кратное 7 число с суммой цифр n.

Чтоб добавить один новый этаж, иногда придется переделать сначала некоторые (или даже все) старые.

- **8.** В шахматном турнире каждый с каждым сыграли по разу. Докажите, что можно так занумеровать участников, чтобы каждый не проиграл участнику со следующим номером.
- **9.** Докажите, что есть точный квадрат, который представляется в виде суммы двух точных квадратов не менее чем 2016 способами.
- **10.** Докажите, что для любого n найдется убывающая арифметическая прогрессия из n членов вида 1/k.

Дополнительные задачи.

Докажите, что для любого п найдется

ИК1. Конечный набор точек плоскости такой, что на расстоянии 1 от каждой точки было ровно n отмеченных точек.

ИК2а. палиндром (не меняется при чтении задом наперед), кратный 2^n ;

ИК26. палиндром, кратный 6^n ;

ИК3а. степень 5 с суммой цифр больше n;

ИК36. ряд из n натуральных чисел, где каждое, начиная со второго, делится на предыдущее, но имеет меньшую сумму цифр;

Сириус, 7 класс, 4 июня 2016 г, www.ashap.info/Uroki/Sirius/1606/index.html