Фазовое пространство

Фазовое пространство – это наглядное геометрическое представление множества вариантов.

- **1.а)** Какое наименьшее число королей можно расставить на клетчатой доске 9×10 так, чтобы они побили все свободные поля?
- **б)** Петя задумал двузначное число. За одну попытку Вася называет двузначное число. Если каждая из цифр Васиного числа отличается не более чем на 1 от стоящей на том же месте цифры Петиного числа, то Вася выиграл. За какое наименьшее число попыток Вася может гарантированно выиграть?
- **2.** Петя задумал пару чисел (x, y), каждое от 0 до 1. За одну попытку Вася называет свою пару чисел (u, v). Если |u-x| и |v-y| оба меньше 0,13, то Вася выиграл. За какое наименьшее число попыток Вася может гарантированно выиграть?

Классическое фазовое пространство получаем, заменяя пары чисел точками координатной плоскости, а тройки чисел – точками пространства. Рассуждениям помогают графики и непрерывность.

- **3. а)** Докажите, что для любого *a* уравнение $arctg(x+a) = arcctg(x) \pi/2$ имеет решение.
- **б)** Докажите, что для любого b уравнение $\sin(x+b) = \cos^7 x$ имеет бесконечно много решений.
- **4.** Монах выходит из своей обители в 12 дня и идет в гору по прямой дороге, достигая вершины в 12 ночи. После ночной стоянки на следующий день он выходит в 12 дня и возвращается в монастырь в 6 вечера. Докажите, что найдется точка пути, в которой монах побывал в одно и то же время в течение обоих маршрутов.
- **5.** Из города A в город B идут две непересекающиеся дороги. Известно, что две машины, едущие по разным дорогам из A в B и связанные веревкой длины 20 метров, смогли проехать, не порвав веревки. Могут ли разминуться, не коснувшись, два круглых воза радиуса 10 метров, центры которых движутся по этим дорогам навстречу друг другу?

У множеств на прямой или окружности подсчитывают суммарную длину, на плоскости или на сфере – площадь, в пространстве – объём.

- **6.** Два дуэлянта договорились встретиться в Гайд-парке между 5.00 и 6.00. Каждый из них приходит на место встречи случайным образом, ждет 15 минут, и если встреча не произошла, то в гневе уходит. Какова вероятность того, что дуэль все-таки состоится?
- **7. а)** На планете X море занимает менее половины поверхности. Докажите, что на X найдутся две диаметрально противоположные точки суши.
- **б)** На окружности закрашены несколько дуг, в сумме менее четверти ее длины. Докажите, что в окружность можно вписать квадрат так, чтобы все вершины были не окрашены.
- **8.** На плоскости нарисован многоугольник площади 1. Докажите, что в нем найдутся две такие точки A и B, что обе координаты вектора AB целые.

Части с разными свойствами отделяются друг от друга границами. Найдите эти границы.

- **9.** а) На какое наибольшее число частей могут разбить плоскость n прямых?
- **б)** В Семигории есть семь пиков, никакие три не лежат на одной прямой. Математик Петя перечисляет их в выбранном им порядке. Альпинист Вася выиграет, если сможет найти такую точку, из которой, повораиваясь по часовой стрелке, пики можно увидеть в указанном порядке. Всегда ли Петя может не проиграть?

Зачетные задачи

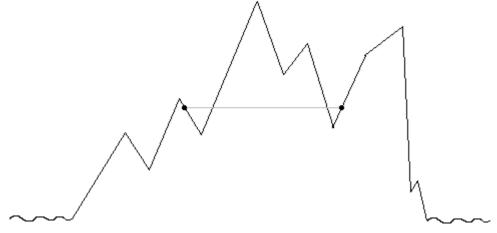
Фп1 Двое играющих по очереди передвигают каждый свою фишку на клетчатой доске 100×100 , каждым ходом — на соседнее по стороне поле. Первый выигрывает, если после его хода станут перпендикулярными отрезки, соединяющие центры занятых фишками клеток с центром доски. Докажите, что если вначале фишки стояли в противоположных углах доски, то первый может выиграть независимо от игры второго.

Определение. *Прямая* на сфере — это пересечение сферы и плоскости, проходящей через центр сферы. *Отрезок* на сфере — это дуга прямой. *Полюса* прямой — две наиболее удаленные от неё точки сферы.

Фп2. а) На сфере радиуса 1000 дан круг радиуса 1. Найдите гмт полюсов прямых, пересекающих круг.

б) На сфере единичного радиуса выбрано несколько отрезков суммарной длины меньше π . Докажите, что существует прямая, не пересекающая ни один из этих отрезков.

Фп5а. а) Двое флатландцев высадились на гору на одинаковой высоте (см. рис). Они договорились



путешествовать так, чтобы в любой момент быть на одинаковой высоте. Докажите, что для горы на рисунке им не удастся спуститься к морю.

б) Этих же флатландцев перекинули в самую высокую точку другой горы. Гора везде выше уровня моря, а ее поверхность — график кусочно-линейной непрерывной функции. Докажит, что они смогут спуститься к морю, двигаясь один по левому склону, а другой по правому , будучи всегда на одинаковой высоте.

в) Докажите, что если есть несколько гор равной высоты, и по склону каждой горы спускается флатландец, то они смогут спуститься, оставаясь все на одной и той же высоте.

Московские сборы, 3 апреля 2019 г, 10 класс, гр. Провода. А.Шаповалов, www.ashap.info/Mosbory/2019v/index.html