Двадцать третья Летняя многопредметная школа Кировской области

Wish Kill, 3-28 июля 2007 г. 10 класс, группа "профи"

7: Три классические задачи

- 1. Удвоение куба: построить сторону куба, чей объем вдвое больше данного.
- 2. Трисекция угла: разделить данный угол на три равные части.
- 3. Квадратура круга: построить квадрат, равновеликий данному кругу.

Теорема 1. Если число α можно построить ЦЛ, то найдется конечная цепочка (башня) квадратичных расширений $Q = F_0 \subset F_1 \subset ... \subset F_n$, такая, что $\alpha \in F_n$.

Следствия 2. a) $\dim_{Q} F_{n} = 2^{n}$; б) Все числа в F_{n} – алгебраические.

Теорема 3. Корень неприводимого кубического многочлена из Q[x] нельзя построить ЦЛ.

Первое доказательство опирается на лемму:

Лемма 4. Пусть поле F — расширение Q, $\dim_Q F = n < \infty$. Если в F лежит корень неприводимого многочлена из Q[x] степени k, то n делится на k.

Второе доказательство опирается на лемму:

Лемма 5. Пусть построена башня расширений как в Теореме 1. Тогда если у квадратного и кубического многочленов из $F_{n-1}[x]$ есть общий корень в поле F_{n} , то у этого кубического многочлена есть корень в F_{n-1} .

Следствие 6. Нельзя построить ЦЛ числа a) $\sqrt[3]{2}$; б) $\sin 10^{\circ}$; в) $\sqrt{\pi}$.

Теорема 7. С помощью циркуля и линейки нельзя

- а) удвоить куб;
- **б)** разделить угол 30° на три равные части;
- в) квадрировать круг.

Для самостоятельного решения

Задача А14. Найдите все такие целые n, что угол в n° можно построить ЦЛ.

Задача A15. Пусть к циркулю и линейке добавлена "разрезалка пополам": прибор, позволяющий провести через данную точку прямую, делящую площадь данной выпуклой фигуры пополам. Докажите, что тогда все три классические задачи можно решить.

www.ashap.info/Uroki/KirovLMSH/2007/index.html