Симметрические многочлены: основная теорема

Onp1. Зададим на множестве строк \mathbf{R}^k лексикографический порядок: скажем, что $\overline{a} < \overline{b}$, если первая ненулевая координата в $\overline{a} - \overline{b}$ отрицательна.

Предл1. Неравенства строк можно складывать и умножать на положительные числа с сохранение смысла.

Зад2. **а)** Пусть N – множество натуральных чисел. Докажите, что в любом непустом подмножестве $M \subset N^k$ есть наименьшая строка.

б) Последовательность строк из N^k $a_1, a_2, ..., a_n, ...$ такова, что $a_1 \ge a_2 \ge ... \ge a_n \ge ...$ Докажите, что она стабилизируется (то есть, начиная с некоторого места, все её члены равны).

Обозначения. Далее всюду рассматриваем многочлены и одночлены от x, y, z. Многочлены $\sigma_1 = x + y + z$, $\sigma_2 = xy + xz + yz$, $\sigma_3 = xyz$ назовем элементарными симметрическими.

Опр2. Скажем что одночлен $a_1 x^{k_1} y^{l_1} z^{m_1}$ младше одночлена $a_2 x^{k_2} y^{l_2} z^{m_2}$, если $(k_1, l_1, m_1) < (k_2, l_2, m_2)$.

Предл3. Старший член произведения многочленов равен произведению старших членов сомножителей.

Опр3. Многочлен от x, y, z называется cummempuчeckum, если он не меняется при перестановке любых двух переменных.

Упр4. Найдите старший член многочлена $\sigma_1^p \sigma_2^q \sigma_3^r$.

Упр5. Пусть $x^k y^l z^m$ — старший член симметрического многочлена. Что можно сказать о k, l, m?

Опр4. Пусть $k \ge l \ge m \ge 0$. Обозначим

$$T_{klm} = T_{klm}(x, y, z) = x^k y^l z^m + x^k y^m z^l + x^l y^k z^m + x^l y^m z^k + x^m y^k z^l + x^m y^l z^k$$

Упрб. **a)** Выпишите симметрические многочлены T_{300} , T_{210} , T_{111} .

- **б)** Представьте σ_1^5 как линейную комбинацию многочленов вида T_{klm} .
- в) Представьте $\sigma_1^2 \sigma_2$ как линейную комбинацию многочленов вида T_{klm}

Предл7. Всякий симметрический многочлен от x,y,z единственным образом представляется в виде линейной комбинации многочленов T_{klm} .

Упр8. В каком случае старшие члены многочленов T_{klm} и $\sigma_1^p \sigma_2^q \sigma_3^r$ совпадают?

Зад9. Докажите индукцией по степени старшего члена, что всякий симметрический многочлен

- **a)** может быть представлен как многочлен от элементарных симметрических многочленов $\sigma_1, \sigma_2, \sigma_3$.
- б) Такое представление единственно.

Опр4. Симметрический многочлен от нескольких переменных — это многочлен, который не меняется при любой перестановке этих переменных. Элементарный симметрический многочлен степени k от переменных $x_1, x_2, ..., x_n$ — это коэффициент при Y^{n-k} в многочлене $(Y + x_1)(Y + x_2)...(Y + x_n)$.

Теорема 10. а) Всякий симметрический многочлен представляется в виде многочлена от элементарных симметрических.

б) Всякий симметрический многочлен от n переменных представляется в виде многочлена от $s_1, s_2, ..., s_n$, где s_k – это сумма k-х степеней переменных.

Зад11. Разложите на множители: $x^3 + y^3 + z^3 - 3xyz$.

Упр12. Представьте $x^2y^2 + x^2z^2 + y^2z^2$ в виде многочлена от x + y + z, xy + yz + xz, xyz.

Зад13. Решите систему уравнений
$$\begin{cases} x+y+z=a\\ x^2+y^2+z^2=a^2\\ x^3+y^3+z^3=a^3 \end{cases}$$

Зад14. Перемножаются все выражения вида $\pm \sqrt{1} \pm \sqrt{2} \pm ... \pm \sqrt{99} \pm \sqrt{100}$ (при всевозможных комбинациях знаков). Докажите, что результат **a**) целое число, **б**) квадрат целого числа.

Для самостоятельного решения

СМ1. В таблицу записано 9 чисел:

Известно, что 6 чисел — суммы строк и суммы столбцов таблицы равны между собой: $a_1 + a_2 + a_3 = b_1 + b_2 + b_3 = c_1 + c_2 + c_3 = a_1 + b_1 + c_1 = a_2 + b_2 + c_2 = a_3 + b_3 + c_3$. Докажите, что сумма произведений строк таблицы равна сумме произведений ее столбцов: $a_1a_2a_3 + b_1b_2b_3 + c_1c_2c_3 = a_1b_1c_1 + a_2b_2c_2 + a_3b_3c_3$.

a_1	a_2	a_3
b_1	b_2	b_3
c_1	c_2	<i>C</i> ₃

- **CM2**. Пусть $x_1, x_2, ..., x_n$ комплексные корни многочлена n-й степени с действительными коэффициентами, P симметрический многочлен от n переменных. Докажите, что при подстановке $x_1, x_2, ..., x_n$ в многочлен P получится действительное число.
- **СМ3.** Пять целых чисел a,b,c,d,e таковы, что a+b+c+d+e и $a^2+b^2+c^2+d^2+e^2$ делятся на нечетное число n. Доказать, что число $a^5+b^5+c^5+d^5+e^5-5abcde$ также делится на n.
- **СМ4.** Пусть $x_1, x_2, ..., x_n$ и $y_1, y_2, ..., y_m$ комплексные корни двух многочленов n-й и m-й степеней соответственно с рациональными коэффициентами. Рассмотрим произведение всевозможных скобок вида (Z– x_i – y_j) по всевозможным парам i и j. Докажите, что получится многочлен от Z с рациональными коэффициентами.

Барнаул 2015, 9 февраля. 10 класс, А.Шаповалов www.ashap.info/Uroki/Altaj/index.html