Неприводимые многочлены. Многочлены деления круга

Задача 1. а) Из центра правильного *23*-угольника ко всем его вершинам проведено по вектору. Докажите, что сумма этих векторов равна 0.

б)** Какое наименьшее число векторов можно из провести центра правильного 23-угольника к его вершинам так, чтобы их сумма была равна 0?

Определение 1. Многочлен ненулевой степени называется *приводимым* в K[x], если он может быть разложен в произведение двух многочленов меньшей степени из K[x], и *неприводимым* в противном случае.

Задача 2. Приводим ли x^4+1 **a)** в R/x/6) в Q/x/?

Факт (Основная теорема арифметики для многочленов). Пусть множество чисел F таково, что для любых двух чисел из F сумма, разность, произведение и частное (при делении не на 0) лежит в F. Тогда всякий многочлен в F[x] может быть разложен в произведение числа и неприводимых многочленов со старшим коэффициентом 1, причем такое разложение единственно с точностью до порядка сомножителей.

Задача 3. Разложите на неприводимые в R/x/ многочлены а) $x^{12}-1$; б) x^5-1 .

Теорема 4. (Критерий неприводимости Эйзенштейна) Пусть $A(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ и p - 1 простое число. Если a_n не делится на p, a_i делится на p для всех i < n, но a_0 не делится на p^2 , то A(x) неприводим в Z[x].

Упр 5. Перемножили два квадратных трехчлена с целыми коэффициентами. Мог ли получиться многочлен вида $x^4+3ax^3+6bx^2+9cx+12$, где a, b, c целые?

Задача 6. Пусть ε — корень n-й степени из 1. Докажите, что $1+\varepsilon+\varepsilon^2+...+\varepsilon^{n-1}= egin{cases} 0 & ec \pi u & \varepsilon \neq 1 \\ n & ec \pi u & \varepsilon = 1 \end{cases}.$

Определение 2. $F_p(x) = x^{p-1} + x^{p-2} + \ldots + x + 1$

Упр7. Найдите все корни многочлена $F_p(x)$.

Лемма 8. Если p – простое, то $F_p(x+1)$ неприводим в Z[x].

Задача 9. Докажите, что если p – простое, то $F_p(x) = x^{p-1} + x^{p-2} + \ldots + x + 1$ неприводим в Z[x]

Упр 7. В поле C есть ровно $\varphi(n)$ примитивных корней n-й степени из 1 (где $\varphi(n) - \varphi$ ункция Эйлера, то есть количество взаимно простых с n среди чисел 1, 2, ..., n.).

Задача 10. Докажите, что **a)** если p – простое, то $\varphi(p^k) = p^k - p^{k-1}$

б) если m и n взаимно просты, то $\varphi(mn) = \varphi(m) \varphi(n)$.

Задача 11 а). Примитивный корень из 1 простой степени p не является корнем никакого многочлена с рациональными коэффициентами степени меньше чем p-1.

б). Из центра правильного p-угольника (где p — простое) к его вершинам проведены p—1 векторов. Докажите, что они линейно независимы над полем \boldsymbol{Q}

Определение 4. Многочлен деления круга – это $\Phi_{_n}(x) = (x-x_{_1})(x-x_{_2})...(x-x_{_k})$, где

 $X_1, X_2, ... X_k$ — все примитивные корни n-й степени из 1.

Упр 12. Вычислите $\Phi_n(x)$ для всех n < 6.

Теорема 13. $x^n - 1 = \Phi_a(x)\Phi_b(x)...\Phi_c(x)$, где a, b, ..., c – всевозможные делители n.

Упр 14. Докажите, что если p – простое, то $\Phi_p(x) = x^{p-1} + x^{p-2} + ... + x + 1$.

Задача 15. Найдите $\Phi_n(x)$ для всех n<18.

Теорема 16. Все коэффициенты $\Phi_n(x)$ – целые.

Факт. Все многочлены деления круга неприводимы в Z[x].

Для самостоятельного решения

МДК1. Докажите, что различные многочлены деления круга взаимно просты.

МДК2. Докажите, что все коэффициенты $\Phi_n(x)$ расположены симметрично относительно середины.

МДК3. При каких m и n многочлен $1 + x^m + x^{2m} + ...x^{(n-1)m}$ делится на многочлен $1 + x + ... + x^{n-1}$?

МДК4. Верно ли, что все коэффициенты многочлена деления круга по модулю не больше 1?

МДК5. Рассматриваются многочлены в Z[x]. Докажите, что для любого *неприводимого* P(x), найдется такой Q(x), что P(Q(x)) – приводим.

А.В.Шаповалов, апрель 2010 г. www.ashap.info/Uroki/1543/2009-10/index.html