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Preface

This small book deals with various questions related to the cal-
culation of areas and volumes.

The main text of the book consists of four lessons.
It is expedient to develop a young student’s understanding of

dimension, i.e., the understanding of how the numerical characteris-
tics (volumes and areas of geometric figures) change as the result of
proportional changes of their size, before teaching how these char-
acteristics can be formally computed by means of standard formulas
(ordinarily used without explaining what is actually going on). In the
first part of the book, we try to achieve this: in the first lesson, we
discuss how area and volume change under rescaling, in the second

one, how rescaling affects the area of a surface and, more generally,
what rescaling does to combinations of different dimensions appearing
in one and the same problem. These lessons are intended for students
of grades 6 to 8 (ages 12-14).

Dimensional considerations suffice to understand how the volume,
say, of the ball depends on its radius. But they do not suffice to
find the exact value of this volume. What helps here is the layer by
layer consideration of the volume in the picture — more precisely, the
Cavalieri’s principle. In the third lesson, we become familiar with the
Cavalieri’s principle for geometric figures made out of cubes, where
this principle is especially clear. The calculation of volumes of such
figures allows us obtain, by geometric means, the value of the sums

1 + 2 + · · · + n and 1 + 4 + . . . + n2

This lesson (except for its very end) is intended for 7th grade students.
In the fourth lesson, the Cavalieri’s principle is used to compute

the volume of the cone and the ball. At the end of the lesson, we
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calculate the surface areas of the disc and the sphere. This lesson
is intended for 8-9th grade students, but can be used as additional
material for 10-11th grade students in the space geometry course.

Our approach to area and volume is not formal, but at some stage
it is expedient to learn about the axiomatic definition of area. This
is done in Supplement A.

Different versions of problems for the math circle (together with
additional problems — which include problems of the type studied in
the lessons, as well as difficult original problems) appear in Supple-
ment B.

The authors are grateful to A.V. Shapovalov, who not only ref-
ereed the original manuscript, but also indicated several inadequate
places in the text and proposed several additional problems, as well
as to M.A. Bershtein, A.D. Blinkov, and T.I. Golenischeva-Kutusova
for useful discussions. The authors will be grateful to readers for
indicating errors and misprints (e-mail: grigory.merzon@gmail.com,
Grigory Merzon).
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Lesson 1

Scale and Volume

It is worth starting the acquaintance with the notion of dimension (in
the sense of length, area, volume) by considering its “checkered” (i.e., dis-
crete) version, in which any consideration can be verified by direct counting.

You can begin with the following well-known problem, which is often solved
incorrectly.

Problem 1.1. After seven washes, the length, width, and height
of a bar of soap has been halved. How many more washes will the
remaining bar take? (For each wash, the same amount of soap is
used.)

Fig. 1.1 a

The answer given to this question is often the following: “the soap
will last for 7 more washes”. But if we assume that this is so, then
the whole bar of soap is good for 14 washes, i.e., for as many washes
as two small pieces of soap (of the size obtained after 7 washes). Let
us think: How many such small pieces must be put together to get
the initial bar of soap?

Fig. 1.1 b

If since it is hard to visualize the three-dimensional
situation considered in this case, it is expedient to first
look at the case of a flat square soap; there we immedi-
ately see that the big bar of soap consists of four small
ones.
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In fact, as we shall see in the next problems, the big bar of soap
actually consists of eight small bars; accordingly, the first 7 washes
consume 7 small bars, so that the remaining small bar is good for
only one wash.

If the lesson starts with this problem, then it is not necessary to immediately
present its solution in detail. You need only explain that there is something wrong
with the naive erroneous answer indicated above.

Problem 1.2. A square of side (a) 3 cm; (b) 1 m was cut into
squares of side 1 cm. How many squares were obtained?
A cube of side (c) 3 cm; (d) 1 m was cut into cubes of side 1 cm.
How many small cubes were obtained?

It is always difficult to calculate something directly from a three-dimensional
image. Usually one has to reduce the problem to a specially constructed flat prob-
lem. One way to do this is to consider the 3D-image layer by layer (“floorwise”).

Solution. (c) A 3 × 3 × 3 cube consists of three identical layers.
Each of these layers is a square of size 3 × 3, which, as we found out
in the previous problem, consists of 3 × 3 = 9 square cells. So there
are 3 × 9 = 27 small cubes.

d) Similarly, we find that a cube of side 1 m consists of 1003 =
= 1 000 000 cubes of side 1 cm (this explains why one cubic metre is
not one hundred, but one million cubic centimetres).

In general, cutting a cube of side 1 m, for example, into fairly
small cubes, one can construct an arbitrarily high tower (also see
Problem 2.11).

Problem 1.3. A loader in a warehouse can lift a package of 3×3×3
one-litre cartons of milk. Will three loaders be able to lift a package
of 9 × 9 × 9 cartons?

Solution. If we simply count the weight of a large package con-
sisting of 9 ·9 ·9 = 729 cartons, which is approximately 729 kg, it will
become clear that the three loaders cannot lift it.

In any case, it is worth figuring out how many small packages the
big one consists of. But it is easy to see that we have actually solved
this problem, see above (with cubes instead of milk cartons), and the
answer will be the same: the large package is 27-times heavier than
the small one.
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Problem 1.4. A children’s inflatable pool is 30 cm deep, and its
bottom is a square of side 1 m. What is the weight of such a pool
filled with water?

Solution. Let us recall that 1 litre, that is, a cubic decimetre,
of water weighs 1 kg. Therefore, the weight of a pool with water in
kilograms is equal to its volume in dm3. Accordingly, the volume of
our water-filled pool is 3 · 102 = 300 dm3 and its weight is 300 kg.

Fig. 1.5

Problem 1.5. Alex and John each built a tower of
cubes (see Figure 1.5). Both towers have a square base
and consist of the same number of cubes.

(a) The side of the base of John’s tower is four times
longer than Alex’s. How many times higher is Alex’s tower
than John’s?

(b) Alex’s tower is four times higher than John’s. How
many times longer is the side of the base of John’s tower
than that of Alex’s tower?

Answer: (a) 16 times; (b) twice.

The central question of the lesson is how the volumes and areas of
arbitrary shapes change when their linear dimensions are multiplied
by a positive integer k (we have already encountered this question in
its simplest form in Problem 1.3).

Fig. 1.6 a Fig. 1.6 b

Problem 1.6. (a) Alex put together a picture consisting of squares
of side 2 cm (see Figure 1.6 (a), and John, a similar picture of squares
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of side 4 cm. How many times is the area of Alex’s picture smaller
than John’s?

(b) A cubic figure is made up of several wooden cubes (see Fig.
1.6 (b). How will its mass change if the size of each cube is doubled?

It is also worth finding out what the answer will be if the size
is increased k times rather than doubled. Note that the answer is
completely independent of the shape of the cubic figure. From this
we can conclude that the next problem has the same answer.

Problem 1.7. How will the mass of an elephant change if all of its
dimensions are doubled? (Of course, you are not allowed to assume
that an elephant has the shape of a parallelepiped.) How will the
area of the elephant in the snapshot change?

Fig. 1.7 a Fig. 1.7 b

Answer: 8 times; 4 times.

Solution. To associate this problem with the previous one, we can
first imagine that the elephant is composed of small cubes (“pixels”).
Now, as the cubes become very small, the pixel elephant becomes
indistinguishable from the real one . . .

Of course, no formal proof in this problem is required; it suffices to understand
what the answer will be.

In fact, as the size of the elephant increases, the elephant’s volume, and hence
its mass, will increase as the cube of its linear dimensions, while the cross-sectional
area of each leg, and, consequently, the strength of its bones will increase only as
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the square of linear dimensions. This means that, as the elephant’s size increases,
its mass will grow significantly faster than the strength of its legs, the enlarged
elephant will no longer be able to stand on its feet.

The same effect can be seen in the following simple discrete model: if a big
cube is composed of small cubes, then the load on each small cube will increase in
proportion to the size of the big cube, simply because the tower of cubes above it
will increase in height. Therefore, at some point, the big cube will collapse under
its own weight.

If you know how areas and volumes change under scaling, then
it is not difficult to understand (qualitatively) what various formulas
for areas and volumes should look like.

Problem 1.8. (a) Denote the area of a circular disk of radius 1 by
V2. What is the area of a disk of radius R?

(b) Denote the volume of a ball of radius 1 by V3. What is the
volume of a ball of radius R?

Answer: (a) V2R
2; (b) V3R

3.

The task of calculating the constants V2 and V3 is much more subtle. It can

be shown (see Lesson 4) that V2 = π, V3 =
4

3
π.

Additional problems

Problem 1.9. Which of the pots can be filled with the most
amount of liquid, the left one, which is wider, or the right one, which
is three times higher, but twice narrower?

Answer: The left pot (11

3
times).

Fig. 1.9 Figure 1.10

Problem 1.10. Two balls of radii 3 and 5 were placed on the left
pan of the scales and one ball of radius 8 on the right pan. Which
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of the pans will outweigh the other? (All balls are made of the same
material.)

A typical answer to such a question is “None, because 3 + 5 = 8”.

Solution. This answer can be refuted convincingly by a visually
clear geometric argument: the two small balls put side by side will
fit into the big one; hence, their total volume must be less than that
of the big ball.

Problem 1.11∗. Two round coins were put on the left pan of the
scales and another one was put on the right pan, and the scale was
in balance. Which of the pans will outweigh the other if each of the
coins is replaced by a ball of the same radius? (All the balls and
coins are made of the same material, and all the coins have the same
thickness.)1

Solution. Denote the radii of the coins by R1, R2, and R3. Since,
at first, the scales were in equilibrium, we have V2R

2
1 +V2R

2
2 = V2R

2
3,

that is, (R2
1 + R2

2 = R2
3). Similarly, to determine what happened to

the scales after the coins were replaced by balls, we must compare
R3

1 + R3
2 to R3

3. But, considering the equality above, we see that the
right-hand side is now multiplied by the larger radius R3, while the
two summands on the left-hand side by the smaller radii R1 and R2:

R3
1 +R3

2 = R2
1 ·R1 +R2

2 ·R2 < R2
1 ·R3 +R2

2 ·R3 = (R2
1 +R2

2) ·R3 = R3
3.

So, the right pan will outweigh the left one.

1The author of this problem is G. Galperin; it was presented at the Lomonosov
Tournament in 2009.

10



Lesson 2

Surface Area

Problem 2.1. What is the surface area of a cube of side (a) 10 cm;
(b) 12 cm?

Answer: (a) 6 · 102 = 600 (cm2); (b) 6 · 122 = 864 (cm2).

In Problem 5 of the previous lesson, we already saw that if a cube
is cut into sufficiently small cubic bricks, then an arbitrarily high
tower can be built from these bricks. The following question arises:
How large is the surface area of this tower? It appears that the tower
is narrow and the surface area must be small. Let us check this.

Problem 2.2. A cube of side 1 m is cut into cubic bricks of side
1 cm from which a tower with base of side 1 is built. What is the
area of the tower’s surface? Is it smaller or greater than the surface
area of the initial cube? How many times?

Answer: 1003 ·4+2 (cm2) ≈ 400 (m2); this is about
400

6
≈ 67 times

greater than the surface area of the initial cube.

Problem 2.3. A cube of side 12 built from small cubic bricks of
side 1 is painted white. How many bricks have no faces painted; one
face painted; two faces painted; three faces painted?

Solution. The bricks without colored faces form a cube of size
10 × 10 × 10 — as we already know, it consists of 103 = 1000 bricks.
The bricks with three colored faces are the corner ones, and there are
as many as there are vertices in the cube, that is, eight. All bricks
with one face painted have their painted face strictly inside the faces
of the cube, and their number is 6 · 102 = 600 (cf. Problem 2.1 (a)).
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Finally, the bricks with two faces painted are those on edges of the
initial cube except the corner ones, and their number is 12 ·10 = 120.

3 3

3 3

2 2

2

2

1

Fig. 2.3

Adding all these numbers together, we obtain 123 = 103 +6×102 +12 ·10+8;
in general, increasing the side of the cube from a to a+b and performing a similar
calculation, we can prove the well-known identity (a+ b)3 = a3 +3a2b+3ab2 + b3,
which is a special case of Newton’s binomial formula. The general binomial formula
can be proved by a similar argument.

Problem 2.4. (a) What fraction of the area of a square of size
12 × 12 is taken up by the boundary cells?

(b) What fraction of the volume of a cube of size 12 × 12 × 12 is
taken up by the boundary bricks?

Answer: (a) 31%; (b) 42%.

Solution. (b) At first glance, it suffices to repeat the solution of
Problem 2.1 (a): the cube has six faces, each of which borders on
12 · 12 = 144 bricks; hence there must be 6 · 144 = 864 bricks in all.

But this calculation yields a wrong answer, because some bricks
border on more than one face and, accordingly, are counted several
times. It is easy, however, to rectify this by using the argument of
the preceding problem: we are interested in the bricks which have at
least one painted face; their number is 600+ 120+ 8 = 728, and they
take up 728/1728 ≈ 42%.

There is an easier solution of the problem: it consists in counting
interior, rather than boundary, bricks. The number of interior bricks
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is 103, which is
103

123 =
(

5

6

)3

≈ 58%. Accordingly, the boundary bricks

take up 100% − 58% ≈ 42%.
Note that the fraction of boundary bricks rapidly increases with

dimension (to make this particularly evident, we have added the
answer “17%” to the same question about a segment of length 12
composed of segments of length 1). Later on we shall observe the
same effect in the continuous situation.

Problem 2.5. A food market sells two varieties of watermelons of
the same diameter. A watermelon of the first variety costs 100 rubles,
but has a very thin peel. A watermelon of the second variety costs
70 rubles, but its peel (which must be thrown away!) takes up 20%
of the diameter. Which variety of watermelons is it more profitable
to buy?

Fig. 2.5

After an exchange of informal arguments, the teacher can take a poll on which
variety of watermelons are preferred. The voices will split, but most likely, the
majority will vote for buying seventy-ruble watermelons, because they seem to
contain 20% less pulp, while their price is 30% lower.

Solution. To solve this problem, it is not necessary to know the
exact formula for the volume of a ball; it suffices to understand how
this volume changes with the linear size of the ball (see Problems 1.7
and 1.8). The radius of the pulp in a watermelon of the second variety
is 0.8 times of that in a watermelon of the first variety. But to find
how many times smaller is its volume, it is required to take the cube
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of side 0.8: 0.8 · 0.8 · 0.8 = 0.64 · 0.8 = 0.512, so that almost half

of a watermelon of the second variety is occupied by peel! Thus, of
course, we should buy the first watermelon.

It is instructive to find out how the fraction of the volume of peel taking up
20% of the radius depends on the dimensionality of the “watermelon”. It is seen
from the table that this fraction grows fairly rapidly with dimension.

Dimension Peel fraction Picture

1 1 − 0.8 = 0.2

2 1 − 0.82 = 0.36

3 1 − 0.83 ≈ 0.49

4 1 − 0.84 ≈ 0.59 —

Problem 2.6. The width of a flat copper ring increases 1.5 times
when the ring is heated. How does the area of the hole change?

Fig. 2.7

Answer: Increases 1.52 = 2.25 times.

Problem 2.7. The length of the equator of
a globe equals 1 m. (a) What is the scale of
the globe? (b) What is the area of Russia on
this globe? (The length of the Earth’s equator
equals 40 000 km; the area of Russia is about
17 000 000 km2.)

Answer: (a) 1 : 40 000 000; (b) approxi-
mately 106 (cm2).

It is important to understand that expanding by a factor of k increases the
area of all figures (not only planar ones) by a factor of k2.
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Fig. 2.8

Problem 2.8. The Earth was hooped
along the equator. Then the hoop was length-
ened by 1 m (so that the arising gap was the
same everywhere). Can a cat slip under the
hoop?

Answer: Surprising as it may seem, it can
(the clearance is about 16 cm).

To figure out this problem, it is useful to
begin by solving its discrete version.

Problem 2.9. A paper belt is put on a
cube of size (a) 3 × 3 × 3; (b) 100 × 100 × 100 as tightly as possible.
What clearance will result from lengthening the belt by 8 (so that
the belt will remain square)?

Fig. 2.9

Solution. It is easier to solve the inverse
problem: How does the length of the belt change
when the gap increases? When the “radius” of the
belt increases by 1, each of its sides increases by 2
and its length, by 4 · 2 = 8. Therefore, conversely,
when the length of the belt increases by 8, a gap
of size 1 appears.

Now we can solve the original problem. We again begin with the
inverse problem: How does the length of the hoop change when its
radius increases from R to R + δ? It is easy to see that the length
increases by 2π(R+ δ)−2πR = 2πδ. Therefore, increasing the length

of the hoop by 1 m results in a clearance of δ =
1

2π
≈ 0.16 cm.

Note that, in both problems, the answer does not depend at all on the initial
size (of the cube or of the Earth). This is a manifestation of linearity of the
problem (cf. Problem 2.10.)
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Additional Problems

Problem 2.10. A balloon (having the shape of an ideal ball) was
blown up so that its area increased by 9%. What happened to its
radius?

Answer: The radius increased
√

1.09 ≈ 1.044 times, that is, by
approximately 4%.

Note that, unlike in Problem 2.8, the increase in the radius in centimetres
cannot be found from the increase in the area in square metres.

Problem 2.11. Is it possible to cut out several discs from a square
of side 10 cm and put them in line so as to obtain a chain longer than
one kilometre?

Solving this problem, pupils often try to first cut out the largest disc, that is,
the disc inscribed in the square.

But after that, difficulties arise: of course, one can cut out four discs from
the remaining corners, but they are very small (what is their diameter?) and
continue to cut out the biggest possible (although rapidly decreasing) discs. At
this point, some students will say: “Since we can cut out discs as long as we like,
we can make the sum of their diameters arbitrarily large”. However, one should
remember the example of an infinitely decreasing geometric progression (e.g., in
which each term is half as long as the preceding one) – this shows that such an
argument is insufficient for solving the problem.

Solution. First, dividing the sides of the initial 10× 10 cm square
into halves, we split the initial square into four squares with a halved
side of 5 cm, and cut out a disc from each of them. We obtain four
discs, each of diameter 5 cm, so that the sum of their diameters
(20 cm) is twice as large as the side of the square. What if we divide
the sides into three equal parts? Of course, we obtain nine squares
of side 10/3 cm each. The sum of the diameters of their inscribed
circles is 9 · (10/3) = 30 cm. Similarly, dividing the sides into ten
parts, we obtain 100 circles of diameter 1 cm, whose diameters sum
up to exactly one metre. In general, dividing the sides into n parts,
we obtain n2 squares of side 10/n, and the sum of the diameters of
inscribed circles equals n2 · (10/n) = 10n, so that increasing n, we
can make it arbitrarily large.
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Parts Number of squares Disc diameter Sum of diameters

1 1 10 cm 10 cm

2 4 5 cm 20 cm

3 9 10/3 cm 30 cm

10 100 1 cm 100 cm

10000 108 0.01 mm 1 km

n n2 10/n cm 10n cm

The essence of the solution is that, when the square is cut into small squares,
the side of each small square decreases linearly, while their number grows quadrat-
ically. Accordingly, the sum of diameters of the circles inscribed in the small
squares depends linearly on their number. Therefore, increasing n, we can make
this sum greater than any given number.

However, to fulfil the requirements in the problem (to built a chain of length
at least 1 km), the number of parts will be n = 104 and we will have to cut up
the initial square into 108 small squares of side 10−3cm, which, of course, is hard
to do in practice.
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Lesson 3

Areas and Sums

As we already saw in Problem 1.2, sometimes it is useful to examine figures
layerwise, since this allows us to represent volumes and areas of checkered figures
as sums. This method works in both directions: sometimes, looking at such a
sum, we can understand something about the area (e.g., as in Problem 3.1 (a)),
and sometimes, the other way around—representing a sum as an area or a volume,
we can calculate it from geometric considerations (as in Problem 3.4 or 3.10∗).

It is useful to model the figures discussed in the problems of this lesson (e.g.,
by glueing together toy bricks). Armed with such models, you can give even
Problem 3.10∗ to kids of any age (in the setting “Build a parallelepiped (brick)
from several pyramids”).

Problem 3.1. (a) Which of the figures in Figures 3.1a and 3.1b
contains more squares? (b) Count these squares.

Fig. 3.1a Fig. 3.1b Fig. 3.1c

Answer: (a) Equally many; (b) 36.

Solution. (a) The respective “rows” of the figures in the figures
contain equally many squares (1, 3, 5, and so on). Hence the total
numbers of squares are equal as well.

(b) The problem can be solved by simply summing the numbers
of squares in layers: 1 + 3 + 5 + 7 + 9 + 11 = 36. But it can also be
solved more geometrically: cutting the second figure into two parts
and assembling the parts into a square (see Fig. 3.1c), we see that
the figure consists of 62 = 36 cells.
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The latter solution gives a geometric proof of the identity 1 + 3 + 5 + . . . +
(2n − 1) = n2.

Certainly, if such an identity is already written, it is possible (and even easier)
to prove it by induction. But geometric summation is a method for not only
proving, but also finding, similar identities; see also Problem 3.10∗.

Problem 3.2. A triangle lies in a rectangular box, so that one of
its sides coincides with the bottom edge of the box and the remaining
vertex lies on the opposite edge (see Fig. 3.2a). What fraction of the
area of the box does the triangle occupy?

Fig. 3.2a Fig. 3.2b

Answer: One half.

Solution. Let us mentally split the box into two parts (see Fig.
3.2b). Exactly half of each of them is taken up by the triangle.
Therefore, in the whole box, exactly half the area is taken up by the
triangle.

This argument proves that the area of a triangle equals half the product of
the base by the altitude2. In general, this problem can serve as the beginning of
a conversation about proving formulas for the areas of figures (triangle, parallel-
ogram, trapezoid) and, if desired, about the definition of area (any calculation of
an area is based on cutting figures into triangles and assembling rectangles from
triangles). But the main topic of this lesson is different.

Problem 3.3. (a) Another triangle was put sideways into a
box (see Fig. 3.3a). Is the fraction of the box area occupied by it
greater than, smaller than, or equal to that in the previous problem?
(b)∗ Does a triangle of area 10 fit in a box of area 19?

Fig. 3.3a Fig. 3.3b Fig. 3.3c

2Provided that the base angles are not obtuse.
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Answer: (a) Smaller; (b) no.

Solution. (a) The longest side of the triangle divides the box in
halves, but the triangle itself occupies only part of one of the halves.

(b)∗ A triangle cannot occupy more than half the area of a rectan-
gular box. To prove this, consider the possible locations of the vertices
(we may assume that all of them lie on the side of the rectangle, since
otherwise we can reduce the size of the box): either one of the edges
of the box contains two vertices of the triangle (this case has already
been handled in the preceding problem and in part (a) of this one),
or the vertices lie on three sides, that is, to be more precise, on two
sides and at a corner (see Fig.3.3b), in which case the box can be
split into three parts,in each of which the triangle occupies at most

Fig. 3.4a

half of the area (see Fig. 3.3c).

Problem 3.4. The area of an isosceles
right triangle is half the area of a square
whose side is equal to the leg of this triangle.
What is the area of a “pixel” (composed of
unit squares) isosceles right triangle with leg,
say, 20 (see Fig. 3.4a)?

Answer:
20 · 21

2
= 210.

Hint. Try to put such a pixel triangle next to another one (of the same size)
in a square box of side 20. How many cells will not fit?

Solution. First solution. It is easy to make up a rectangle of
size 20 × 21 from two such pixel triangles (see Fig. 3.4b). Thus, the
area of the triangle is half the area of this rectangle and is equal to
(20 · 21)/2 = 210.

Second solution. First, let us look carefully at the true (not pixel)
triangle. It occupies precisely half the box area because of symmetry:
the unoccupied part is perfectly symmetric to the occupied one.

Let us try to repeat this argument for the pixel triangle. The re-
flection of the given triangle across the diagonal intersects the original
triangle (see Fig. 3.4c). But the cells in the intersection are easy to
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count: all of them lie on the diagonal of the square, and their number
is exactly 20. Thus, if the required area equals S, then the area of the

square equals 202 = 2S − 20, whence we obtain S =
202 + 20

2
= 210.

Fig. 3.4b Fig. 3.4c

The second solution may seem to be more complicated, but it is based on
a more powerful idea, so that it extends more readily to other sums (see, e.g.,
Problem 3.10∗; the second solution can well be postponed until its discussion).

Definition. The area of a right isoceles pixel triangle with leg n
(that is, the number 1 + 2 + 3 + . . . + n) is called the nth triangular

number and denoted by Tn.

Problem 3.5. Find the hundredth triangular number.

Hint. One can look for it geometrically by using the preceding problem.

Answer:
101 · 100

2
= 5050; in general, Tn =

n(n + 1)

2
.

Clearly, when we reduce the size of the pixels, the pixel triangle tends to the
true one. It is instructive to check that its area tends to the area of the true
triangle as well.

In the same way, we can find the sum of any arithmetic progression: first, we
represent it as the area of a right pixel trapezoid and then make up a rectangle
from two equal trapezoids (see Fig. 3.5).

2·(3+5+...+11)=(3+11)·5

5

3 11

Fig. 3.5
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As we see, the height of the resulting rectangle is equal to the altitude (that
is, to the number of “terms”) of the trapezoid, and its width is equal to the sum
of the lengths of its bases (that is, the sum of the first and the last term).

Problem 3.6. Find the sum of all two-digit numbers divisible by 7.

Answer:
(14 + 98) · 13

2
= 728.

Solution. We are asked to find the sum 14+21+. . .+91+98. This
is the sum of an arithmetic progression consisting of (98−14)/7+1 =
13 terms, which, as explained above, can be calculated geometrically.

Problem 3.7. Find the sum of two consecutive triangular num-
bers.
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Fig. 3.7

Hint. Two pixel triangles of sizes Tn and Tn−1 can be
assembled into an n × n square.

Answer: Tn + Tn−1 = n2.

Problem 3.8. Which of the figures shown in Fig-
ures 3.8a and 3.8b contains more cubes?

Hint. Cut the picture into layers and apply Problem 3.1 to each of them.

Fig. 3.8a Fig. 3.8b

Problem 3.9. What part of a cubic box is occupied by the (irreg-
ular) quadrangular pyramid shown in Fig. 3.9a?

Certainly, in this problem the known formula for the volume of a pyramid
cannot be used (in return, as we shall see in the next lesson, the volume formula
can be derived from this problem).
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Hint. Fill the whole box with several such pyramids.

Answer: 1/3.

Fig. 3.9a Fig. 3.9b

Solution. Three such pyramids can be assembled into a cube (see
Fig. 3.9b). This can be explained as follows. Choose one of the
vertices of the cube and consider the three faces not containing it.
Let us construct the three pyramids whose apexes coincide with the
chosen vertex and whose bases coincide with the chosen faces. These
pyramids are shown in different shadings.

The same partition can be written in coordinates: the cube 0 6 x1, x2, x3 6 1
is split into the parts Pi = {(x1, x2, x3) | max(x1, x2, x3) = xi}. Note that such a
partition generalizes directly to a (hyper)cube of any dimension.

Problem 3.10∗. (a) In the corner of a room a pyramid of altitude n
is stacked (see Fig. 3.8a). How many cubes does it contain?

(b) Calculate the sum 12 + . . . + n2.

Hint. Try to make up a figure of already known volume from several such
pyramids (recall Problem 3.4 for inspiration).

Answer:
n(n + 1)(2n + 1)

6
.

Solution. One of the solutions of this problem reduces to assem-
bling the six pyramids of the preceding problem into a parallelepiped
of size n × (n + 1) × (2n + 1), in the spirit of the first solution
of Problem 3.4 (Figure 3.10a shows the three successive steps of
assembling three such pyramids into half of such a parallelepiped;
see also [5]). The drawback of this approach is that the picture is
complicated by the “teeth” of the pyramids, so that it is even unclear
whether the sum of third powers can be found in this way.
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Fig. 3.10a

Fig. 3.10b Fig. 3.10c

A more satisfactory method is to keep what is necessary (namely,
the partition of the cube into three equal parts) and throw out the
inessential: we will not insist on the disjointness of the parts. Instead,
we partition the cube into three intersecting pyramids and then take
into account their intersections (in the spirit of the second solution
of Problem 3.4).

Thus, we have split the cube of size n × n × n into three pyra-
mids. The common part of all three pyramids is the diagonal (see
Fig. 3.10b), i.e., it consists of precisely n cubes. The pairwise inter-
sections of pyramids are pixel triangles (see Fig. 3.10c) containing
1 + . . . + n cubes each.

It remains to apply the inclusion–exclusion principle: denoting
1k + . . . + nk by Sk(n), we obtain n3 = 3S2(n) − 3S1(n) + n, and
recalling that

S1(n) =
n(n + 1)

2
,

we find
S2(n) =

n(n + 1)(2n + 1)

6
.

Additional Problems

Problem 3.11∗. Prove the addition theorem for triangular numbers:
Tn+m = Tn + Tm + nm.
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Hint. Build an isosceles right triangle with leg n + m from two triangles
with legs n and m and a rectangle with nm cell (see Fig. 3.11).

Tm

Tn

mnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmnmn

Fig. 3.11c

Problem 3.12∗. Acting in the spirit of the second
solution of Problem 3.10∗, try to successively find
the sums of third and fourth powers (S3(n) and
S4(n)).

Answer: S3(n) =
(

n(n + 1)

2

)2

;

S4(n) =
n(n + 1)(2n + 1)(3n2 + 3n − 1)

30
.

A geometric proof of the identity S3(n) = S1(n)2 can be found in the paper [1].

Note that S4(n) does not decompose into linear factors. Thus, it is
hardly possible to find this sum by “assembling a (hyper)parallelepiped from
(hyper)pyramids.

Problem 3.13∗. Find the nth pyramidal number, that is, the sum
of T1 + T2 + . . . + Tn consecutive triangular numbers.

Hint. Construct a parallelepiped from pyramids similar to those in Prob-
lem 4.1.

Answer:
n(n + 1)(n + 2)

6
.
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Lesson 4

Cavalieri’s Principle

Problem 4.1. Which of the pyramids shown in the figures has
more cubes?

Fig. 4.1a Fig. 4.1b

Solution. Let us look at the vertical layers. Each of them is a
“triangle” of cubes, and the corresponding layers of pyramids coincide
(up to translation). Therefore, the pyramids have the same number
of cubes.

The solution of this problem is based on the idea of considering 3D pictures
layer by layer, which has played the key role in the preceding lesson. The rest
of the lesson is devoted to applying the same idea, but in the continuous, rather
than discrete, context.

Problem 4.2∗. Prove that

T1 + T2 + . . . + Tn = n · 1 + (n − 1) · 2 + (n − 2) · 3 + . . . + 1 · n.

Hint. Cut the pictures to the previous problem into horizontal layers.

Given two solids in space, suppose that all planes parallel to a
fixed one are drawn. Cavalieri’s principle asserts that if the area of
the section of the first solid by each plane is equal to the area of the
section of the second solid by the same plane, then the volumes of
the solids are equal.
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Fig. 4.2

This statement can be generalized: if the respective areas of
sections of two solids differ by a factor of k, then the volumes of
these solids differ by the same factor.

Problem 4.3. Formulate an analogue of Cavalieri’s principle for
planar figures.

Solution. Given two figures in the plane, suppose that all straight
lines parallel to a fixed one are drawn. If each of the lines intersects
the figures in equal segments, then the areas of the figures are equal
(see Fig. 4.3).

Fig. 4.3

Problem 4.4. Prove Cavalieri’s principle (a) for trapezoids with
bases parallel to the sections; (b) for convex polygons in the plane.

Solution. (a) The required assertion follows directly from the area
formula for a trapezoid.

(b) Suppose that the respective sections of polygons M and N by
straight lines parallel to a line l are equal. Let us draw the line parallel
to l through each of the vertices of M and N (see Fig. 4.4). These
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Fig. 4.4

lines splits each polygon into trapezoids (in the
generalized sense: some of these trapezoids may
be parallelograms or even triangles). The areas
of the respective trapezoids are equal by virtue of
part (a) of the problem. Therefore, so are the areas
of the polygons.

A similar argument shows that if the lengths of respective sections of two
polygons by straight lines parallel to a given one differ by a factor of k, then the
areas of these polygons differ by the same factor.

Problem 4.5. A solid is expanded by a factor of k in one direction.
What happens to its volume?

Answer: It is multiplied by k.

If you desire, you need not derive this fact from Cavalieri’s principle and
consider it as being obvious.

Solution. The answer can be formally derived from Cavalieri’s
principle as follows. Choose a plane α parallel to the direction of
expansion. Then each section of the new solid by a planes parallel
to α is the expanded (by a factor of k) section of the old one by the
same plane. Therefore, the areas of these sections differ by a factor
of k (see the comment concerning the preceding problem). Thus, the
volumes of the old and new solid differ by a factor of k as well.

This allows us to rigorously derive the answer to Problem 1.7, which we have
taken on faith: to k-times enlarge an elephant in all dimensions, we expand in each
of the three coordinate directions in turn; each expansion increases the volume
k times, so that in all the volume will increase k3 times.

apex

altitude

base

Fig. 4.5a

Definition. In this lesson, by a cone

we mean a body consisting of a flat
figure (‘the base of the cone’) together
with all straight line segments joining it
with a fixed point (‘the vertex, or apex,
of the cone’) outside the plane of the
base.
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Fig. 4.5b

For example, the usual (‘right circular’)
cone is the cone whose base is a disc (and the
vertex is exactly above the centre of this disc),
its lateral surface is a cone over a circle, and a
pyramid is a cone over a polygon.

Problem 4.6. Suppose that a cone has a
base of area S and its height equals h. Find the area of the section
of this cone by a plane parallel to the base at a distance of x from
the vertex.

Fig. 4.6

Solution. Note that this section is the base reduced by a factor
of h/x. Therefore, the required area equals (x/h)2S.

Problem 4.7. Prove that the volume of a cone depends only on
its altitude and on the area of its base (and does not depend on the
shape of the base).

Problem 4.8. (a) Given that the volume of a cone of altitude 1
with base of area 1 equals c, calculate the volume of a cone of
altitude h with base of area S. (b) What is c?

Hint. b) It is convenient to consider a cone which is a pyramid with square
base.

Answer: (a) chS; b) c =
1

3
. Thus, the volume of the cone is

1

3
hS.
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Fig. 4.9

Solution. (b) See Problem 3.9.

Problem 4.9. Find the area of the
section of a ball of radius R by a plane
at a distance of x from the centre (see
Fig. 4.9).

Answer: π(R2 − x2).

Problem 4.10. Find the volume of a ball of radius R.

Hint. Using Cavalieri’s principle, represent this volume as the difference of
the volumes of two bodies.

Solution. Consider the hemisphere (see Fig. 4.10). As is seen from
the previous problem, the area of each of its sections is the difference
of two areas, πR2 and πx2, that is, the areas of the corresponding
sections of the cylinder and the cone. It follows (from Cavalieri’s
principle) that the volume of the hemisphere is the difference between
the volume of the cylinder (of altitude R with base of radius R) and
the cone (with the same altitude and base). Thus, the volume of the
ball of radius R is

2(πR3 − 1

3
πR3) =

4

3
πR3.

Fig. 4.10

This calculation of the volume of a ball is due to Archimedes. In our times,
the volume of a ball is usually computed by integration, although the calculation
is essentially the same.

Problem 4.11. (a) On a square lined paper, a polygon M whose
vertices are at grid points and sides do not go along grid line is
sketched. Prove that the sum of the lengths of vertical segments
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of the grid lines inside M is equal to the sum of lengths of horizontal
segments of the grid lines inside M .

(b) What is a generalisation of this statement to polygons whose
sides are allowed to go along grid lines?

Hint. Each of the sums is equal to the area of the polygon.

Compare this problem with Problem 4.4.

Fig. 4.11

Solution. (a) Let us cut M along the horizontal
grid lines. We obtain several triangles, trapezoids,
and possibly parallelograms. The area of each of
these figures is equal to half the sum of the two
horizontal segments of the grid lines that bound it
(if a figure is bounded by one segment, then the
second number is assumed to be zero). Summing these areas and
noticing that each segment occurs precisely twice in the sum (it
bounds some figure from above and another figure from below), we
obtain the assertion of the hint.

(b) It is seen from the solution of part (a) that the sides going
along the grid lines must be assigned the weight 1/2. As a result, we
obtain the following assertion.

Given an arbitrary polygon on square lined paper with vertices at

grid points, the sum of the horizontal segments of the grid inside the

polygon plus half the sum of its horizontal sides is equal to the sum

of vertical segments of the grid lines inside the polygon plus half the

sum of its vertical sides (and is equal to the area of the polygon).

The statement of part (b) clarifies the solution of part (a): it is easy to
understand that if the assertion of the hint holds for two polygons without interior
points, then it holds also for their union; it remains to note that any polygon can
be cut into small trapezoids and triangle (with sides going along grid lines), for
which the required assertion is obvious.
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Supplement: Areas of discs and spheres

Having learned how to calculate the volumes of cones and knowing
the volume of a ball, we can look into the question of why the area
of a disc is πR2 and the area of a sphere is 4πR2.

First, we must understand what the question is about: we al-
ready saw in Problem 1.8 that the area of a disc is (constant) · R2,
and it is easy to calculate the approximate value 3.14 of the con-
stant. Apparently, to be done, it suffices to simply denote this
constant by π. The point is that there is yet another definition
of the number π: from the same dimensional considerations, the
length of a circle is (constant) · R, and π is defined to be half this
constant. What we want to prove is that these two definitions give the

Fig. 4.12

same number.
To relate the length of a circle to the area of

a disc, we shall think of a disc as of the union
of concentric circles. Let us imagine that each
of these circles is an elastic string. If we cut our
disk along a radius (see Fig. 4.12), then each
string will straighten out into a segment. Into
what figure will our disc turn? What figure will
then be obtained from our disk?

Since the length of the string at a distance
x from the center equals 2πx, we obtain a right
triangle with legs R and 2πR. The area of this
triangle (and hence of the disc of radius R) is
(2πR · R)/2 = πR2, as required.

Such a reduction of the evaluation of the area of a ball to that
of the area of a triangle resembles the calculation of the volume of
a cone in the last lesson. We can say that we consider the disk as
a “cone over a circle” (and accordingly adapt the argument, in the
spirit of the calculation of the area of the sphere performed below).

Note also that now it is easy to find the area of any ellipse. Indeed, an ellipse
with semi-major axis a and semi-minor axis b is a circle stretched a times in the
horizontal direction and b times in the vertical direction. Since the expansion by
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a factor of k in one direction multiplies the area by k, it follows that the area of
the ellipse equals πab.

Fig. 4.13

The area of a sphere can be found in the same
way, by considering the ball which it bounds as a cone
over it: it suffices to cut the ball into thin wedges
with vertices at the centre (see Fig. 4.13).

Each wedge can be treated as a cone; therefore,
the total volume V of the wedges (that is, the volume

of the ball) is
1

3
SR, where S is the sum of the areas of

wedge bases (that is, the area of the sphere). Substituting the answer
to Problem 4.10, we obtain SR/3 = 4πR3/3; thus, S = 4πR2.

Notice that the area of the sphere is exactly the product of the

Fig. 4.14

circumference of the sphere by its di-
ameter. This is no coincidence: it
can be shown that the axial projection
of the sphere on a tangent cylinder
preserves area—this fact is well known
in cartography (see Fig. 4.14).

Problem 4.12∗. Prove that the ratio
of the volume of the ball by that of
a polyhedron circumscribed about it is
equal to the ratio of the surface area of
the ball by that of the polyhedron.

Hint. The ratio of volume to surface
area is equal to R/3 for both the ball and a
circumscribed polyhedron.
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Supplement A

Definition of area and volume

The calculation of the area of any figure is based on cutting the
figure into pieces and summing the areas of these pieces (see, e.g.,
the proof of the area formula for a triangle in Problem 3.2). The
axiomatic definition of area is based on the same idea.

Area can be defined as a function S on the set of (planar) polygons
with the following natural properties (“area axioms”):

(1) S is preserved by motions;

(2) S is strongly additive: if polygons T and T ′ have no common
interior points, then S(T ∪ T ′) = S(T ) + S(T ′);

(3) S(rectangle of sides a, b) = ab.

It can be proved (by cutting any polygon into triangles) that these
properties determine the function S uniquely.

If we do not want to limit the definition of area to polygons, then
we must add the axiom of area nonnegativity, which makes it possible
to calculate the area of a figure by approximating it from below and
above by areas of polygons contained inside the figure and containing
it. It is also necessary to choose a class of figures for which area is
defined, because there does not exist any function with the properties
listed above which is defined for all figures, that is, for arbitrary sets
of points (see, for instance, the booklet [4]); although, for figures
bounded by reasonable curves, no problems of this kind arise.

We have seen that, for calculating volume, Cavalieri’s principle is
also needed. This is reflected in the definition of volume.

Volume can be defined as a function V on the set of polyhedra
which satisfies the following axioms:

(1) V is preserved by motions;
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(1′) V satisfies Cavalieri’s principle;

(2) if the interiors of polyhedra P and P ′ do not intersect, then
V (P ∪ P ′) = V (P ) + V (P ′);

(3) V (rectangular cuboid with sides a, b, c) = abc.

Note that the counterpart of axiom 1′ for polygons follows from
axioms 1 and 2, while for three-dimensional figures, axiom 1′ does
not follow from axioms 1–3. Therefore, it is necessary to include
this axiom in the definition—otherwise, surprising as it may seem,
many functions different from the true volume will fit this definition
(such functions arise from the Dehn invariant ; see, for instance, the
paper [3]).
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Supplement B

Handout materials



One Lesson on Dimension (Simpler Version)

Problem 0. After seven washes, the length, width, and height of a bar
of soap has been halved. How many more washes will the remaining bar
take? (For each wash, the same amount of soap is used.)

Problem 1. A loader in a warehouse can lift a package of 3× 3× 3 one-
litre cartons of milk. Will three loaders be able to lift a package of 9× 9× 9
cartons?

Problem 2. A children’s inflatable pool is 30 cm deep, and its bottom
is a square of side 1 m. What is the weight of such a pool filled with water?

Problem 3. (a) Alex put together a picture consisting of squares of side
2 cm (see the picture on the left) and John, a similar picture of squares
of side 4 cm. How many times is the area of Alex’s picture smaller than
John’s?

(b) A cubic figure is made up of several wooden cubes (see the central
picture). How will its mass change if the size of each cube is doubled?

(c) How will the mass of an elephant change if all of its dimensions are
doubled? (Of course, you are not allowed to assume that the elephant has
the shape of a parallelepiped.) How will the area of the elephant in the
snapshot (see the picture on the left) change?

Problem 4. (a) (a) What fraction of the area of a square of size 12× 12
is taken up by the border cells? (b) What fraction of the volume of a cube
of size 12 × 12 × 12 is taken up by the boundary bricks?

Problem 5. (b) A farm store sells two varieties of watermelons of the
same diameter. A watermelon of the first variety costs 100 rubles but has
a very thin peel. A watermelon of the second variety costs 70 rubles, but
its peel takes up 20% of the diameter (and has to be thrown away). Which
variety of watermelons is it more profitable to buy?

Problem 6. The length of the equator of a globe is 1 m. (a) What is its
scale? (b) What is the area of Russia on this globe? (The length of the
Earth’s equator equals 40 000 km; the area of Russia is about 17 000 000 km2.)
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One Lesson on Dimension (Harder Version)

Problem 0. After seven washes, the length, width, and height of a bar
of soap has been halved. How many more washes will the remaining bar
take? (For each wash, the same amount of soap is used.)

Problem 1. A loader in a warehouse can lift a package of 3× 3× 3 one-
litre cartons of milk. Will three loaders be able to lift a package of 9× 9× 9
cartons?

Problem 2. A children’s inflatable pool is 30 cm deep, and its bottom
is a square of side 1 m. What is the weight of such a pool filled with water?

Problem 3. (a) A cubic figure is made up
of several wooden cubes (see the picture). How
will its mass change if the size of each cube is
doubled?

(b) How will the mass of an elephant change
if all of its dimensions are doubled?

Problem 4. (a) Denote the area of the
circular disc of radius 1 by V2. What is the
area of the disc of radius R? (b) Denote the
volume of the ball of radius 1 by V3. What is
the volume of a ball of radius R?

Problem 5. Two balls of radii 3 and 5 were
placed on the left pan of the scales and one ball
of radius 8, on the right pan. Which of the pans
will outweigh the other? (All balls are made of
the same material.)

Problem 6. (a) What fraction of the volume of a cube of size 12×12×12
is taken up by the boundary bricks?

(b) A supermarket sells two varieties of watermelons of the same di-
ameter. A watermelon of the first variety costs 100 rubles, but has very
thin peel. A watermelon of the second variety costs 70 rubles, but its peel
takes up 20% of diameter (and has to be thrown away). Which variety of
watermelons is it more profitable to buy?

Problem 7. The length of the equator of a globe equals 1 m. (a) What
is the scale of the globe? (b) What is the area of Russia on this globe? (The
length of the Earth’s equator equals 40 000 km; the area of Russia is about
17 000 000 km2.)
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Additional Problems

Problem 8. The width of a flat copper ring increases 1.5 times when
the ring is heated. How does the area of the hole change?

Problem 9∗. The Earth was hooped along the equator. Then the hoop
was lengthened by 1 m (so that the arising gap was the same everywhere).
Can a cat slip under the hoop?

Problem 10∗. A balloon (having the shape of an ideal ball) was blown
up so that its area increased by 9%. What happened to its radius?

Problem 11∗. Is it possible to cut out several discs from a square of
side 10 cm and put them in line so as to obtain a chain longer than one
kilometre?

Problem 12∗. Two round coins were put on the left pan of the scales
and another one was put on the right pan, and the scales were in balance.
Which of the pans will outweigh the other if each of the coins is replaced
by a ball of the same radius? (All the balls and coins are made of the same
material, and all the coins have the same thickness.)
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Two Lessons on Dimension (First Lesson)

Problem 0. After seven washes, the length, width, and height of a bar
of soap has been halved. How many more washes will the remaining bar
take? (For each wash, the same amount of soap is used.)

Problem 1. A square of side (a) 3 cm; (b) 1 m was cut into squares of
side 1 cm. How many squares were obtained? A cube of side (c) 3 cm; (d)
1 m was cut into cubes of side 1 cm. How many small cubes were obtained?

Problem 2. A loader in a warehouse can lift a package of 3× 3× 3 one-
litre cartons of milk. Will three loaders be able to lift a package of 9× 9× 9
cartons?

Problem 3. A children’s inflatable pool is 30 cm deep, and its bottom
is a square of side 1 m. What is the weight of such a pool filled with water?

Problem 4. Alex and John each built a tower of cubes.
Both towers have a square base and consist of the same number
of cubes.

(a) The side of the base of John’s tower is four times longer
than Alex’s. How many times higher is Alex’s tower than
John’s?

(b) Alex’s tower is four times higher than John’s. How many
times longer is the side of the base of John’s tower than that of
Alex’s tower?

Problem 5. (a) Alex put together a picture consisting of squares of side
2 cm (see the picture on the left), and John, a similar picture of squares
of side 4 cm. How many times is the area of Alex’s picture smaller than
John’s?

(b) A cubic figure is made up of several wooden cubes (see the picture
on the right). How will its mass change if the size of each cube is doubled?

Problem 6. How will the mass of an elephant change if all of its
dimensions are doubled? (Of course, you are not allowed to assume that
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an elephant has the shape of a parallelepiped.) How will the area of the
elephant in the snapshot change?

Problem 7. (a) Denote the area of a circular disk of radius 1 by V2.
What is the area of a disk of radius R? (b) Denote the volume of a ball of
radius 1 by V3. What is the volume of a ball of radius R?

Two Lessons on Dimension (Second Lesson)

Problem 0. What is the surface area of a cube of side (a) 10 cm;
(b) 12 cm?

Problem 1. A cube of side 1 cm is cut into cubic bricks of side 1 cm
from which a tower with base of side 1 is built. What is the area of the
tower’s surface? Is it smaller or greater than the surface area of the initial
cube? How many times?

Problem 2. A cube of side 12 built from small cube bricks of side 1 is
painted white. How many bricks have no faces painted; one face painted;
two faces painted; three faces painted?

Problem 3. (a) What fraction of the area of a square of size 12 × 12 is
taken up by the border cells?

(b) What fraction of the volume of a cube of size 12× 12 × 12 is taken
up by the boundary bricks?

Problem 4. A supermarket sells two varieties of watermelons of the
same diameter. A watermelon of the first variety costs 100 rubles, but has
a very thin peel. A watermelon of the second variety costs 70 rubles, but
its peel takes up 20% of the diameter (and has to be thrown away). Which
variety of watermelons is it more profitable to buy?

Problem 5. The length of the equator of a globe equals 1 m. (a) What
is the scale of the globe? (b) What is the area of Russia on this globe?
(The length of the Earth’s equator is 40 000 km; the area of Russia is about
17 000 000 km2.)
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Problem 6. A paper belt is put on a cube of size (a) 3×3×3; (b) 100×
100×100 as tightly as possible. What clearance will result from lengthening
the belt by 8 (so that the belt will remain square)?

Problem 7. The earth was hooped along the equator. Then the hoop
was lengthened by 1 m (so that the arising gap was everywhere the same).
Can a cat slip under the hoop?

Additional Problems

Problem 8. Which of the pots can be filled with the most amount of
liquid, the left one, which is wider, or the right one, which is three times
higher, but twice narrower?

Problem 9. Two balls of radii 3 and 5 were placed on the left pan of
the scales and one ball of radius 8 on the right pan. Which of the pans will
outweigh the other? (All balls are made of the same material.)

Problem 10∗. Two round coins were put on the left pan of the scales
and another one was put on the right pan, and the scales were in balance.
Which of the pans will outweigh the other if each of the coins is replaced
by a ball of the same radius? (All the balls and coins are made of the same
material, and all the coins have the same thickness.)

Problem 11. Is it possible to cut out several discs from a square of
side 10 cm and put them in line so as to obtain a chain longer than one
kilometre?

Problem 12. The width of a flat copper ring increases 1.5 times when
the ring is heated. How does the area of the hole change?

Problem 13. A balloon (having the shape of an ideal ball) was blown
up so that its area increased by 9%. What happened to its radius?
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A Lesson on Areas and Sums

Problem 1. (a) Which of the figures in the pictures contains more
squares? (b) Count these squares.

Problem 2. A triangle lies in a rectangular box, so that
one of its sides coincides with the bottom edge of the box
and the remaining vertex lies on the opposite edge (see the
picture on the right). What fraction of the area of the box
does the triangle occupy?

Problem 3. (a) Another triangle was placed sideways in
a box (see the picture on the right). Is the fraction of the
box area occupied by it greater than, smaller than, or equal
to that in the previous problem?

(b)∗ Does a triangle of area 10 fit in a box of area 19?

Problem 4. The area of an isosceles right triangle is
half the area of a square whose side is equal to the leg of
this triangle. What is the area of a “pixel” (composed of
unit squares) isosceles right triangle with leg, say, 20 (see
the picture on the right)?

Definition. The area of a pixel triangle with leg n (that is, the number
1 + 2 + 3 + . . . + n) is called the nth triangular number and denoted by Tn.

Problem 5. Find T100 = 1 + 2 + 3 + . . . + 100.

Problem 6. Find the sum of all two-digit numbers divisible by 7.

Problem 7. Find the sum of two consecutive triangular numbers.

Problem 8. Which of the figures contains more cubes?
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Additional Problems

Problem 9. Prove the addition theorem for triangular numbers: Tn+m =
Tn + Tm + nm.

Problem 10. What part of a cubic box is taken up by the (irregular)
quadrangular pyramid (see the picture on the left)?

Problem 11∗. (a) In the corner of a room a pyramid of height n is stacked
(see the picture on the right). How many cubes does it contain? (b)
Calculate the sum 12 + . . . + n2.

Problem 12∗. Find the nth pyramidal number, that is, find the sum of
T1 + T2 + . . . + Tn consecutive triangular numbers.

Problem 13∗. Prove geometrically that 1 + . . . + n3 = (1 + . . . + n)2.
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Lesson on Cavalieri’s Principle

Problem 0. Which of the pyramids shown in the figures contains more
cubes?

Given two solids in space, suppose that all planes parallel to a fixed one
are drawn. Cavalieri’s principle asserts that if the area of the section of
the first solid by each plane is equal to the area of the section of the second
solid by the same plane, then the volumes of the solids are equal.

Problem 1. Formulate an analogue of Cavalieri’s principle for planar
figures.

Problem 2. Prove Cavalieri’s principle (a) for trapezoids with bases
parallel to the sections; (b) for convex polygons in the plane.

Problem 3. A solid is expanded by a factor of k in one direction. What
happens to its volume?

Definition. In this lesson, by a cone we mean a body consisting of a
planar figure (‘the base of the cone’) together with all straight line segments
joining it to a fixed point (‘the vertex, or apex, of the cone’) that lies outside
the plane of the base.

Problem 4. Suppose that a cone has a base of area S and its altitude
is h. Find the area of the section of this cone by a plane parallel to the base
and located at a distance of x from the vertex.

Problem 5. Prove that the volume of a cone depends only on its altitude
and on the area of its base (and does not depend on the shape of the base).

Problem 6. Given that the volume of a cone of altitude 1 with base
of area 1 equals c, calculate the volume of a cone of height h with base of
area S.

Problem 7. Considering a pyramid with square base, find c.

Problem 8. Find the area of the section of a ball of radius R by a plane
located at the distance x from the centre of the ball.

45



Additional Problems

Problem 9∗. Prove that

T1 + T2 + . . . + Tn = n · 1 + (n − 1) · 2 + (n − 2) · 3 + . . . + 1 · n.

Problem 10∗. Prove that the ratio of the volumes of the ball and of a
polyhedron circumscribed about it is equal to that of the surface areas of
thes ball and the polyhedron.

Problem 11∗. (a) On square lined paper, a polygon M whose vertices
are at grid points and whose sides do not go along grid lines is sketched.
Prove that the sum of lengths of vertical segments of the grid lines located
inside M is equal to the sum of lengths of horizontal segments of the grid
lines inside M .

(b) What is a generalisation of this statement to polygons whose sides
are allowed to go along grid lines?
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